

Quarkonium theory

Alexander Rothkopf

Faculty of Science and Technology
Department of Mathematics and Physics
University of Stavanger

References:

S.Kim, P. Petreczky, A.R., JHEP 1811 (2018) 088

P. Petreczky, A.R., J. Weber, NPA982 (2019) 735

D. Lafferty, A.R. arXiv:1906.00035

Y. Akamatsu et. al. JHEP 1807 (2018) 029 & (in preparation)

2019 RHIC & AGS ANNUAL USERS' MEETING HEAVY FLAVOR WORKSHOP - JUNE 4TH - BNL - USA

A challenge to theory

A wealth of high precision data on both flavors from RHIC and LHC

Bottomonium: a non-equilibrium probe of the full QGP evolution

Charmonium: a partially equilibrated probe, sensitive to the late stages

A challenge to theory

A wealth of high precision data on both flavors from RHIC and LHC

Bottomonium: a non-equilibrium probe of the full QGP evolution

Charmonium: a partially equilibrated probe, sensitive to the late stages

Goal: provide first principles interpretation to intricate phenomenology

Properties of equilibrium QQ

Robust in-medium masses from lattice NRQCD

with S.Kim, P. Petreczky: JHEP 1811 (2018) 088

Properties of equilibrium QQ

Robust in-medium masses from lattice NRQCD

In-medium QQ potential

Improved extraction from realistic lattice QCD

Novel parametrization of V(R) for use in phenomenology

with P. Petreczky, J. Weber: NPA982 (2019) 735 with D. Lafferty arXiv:1906.00035

with S.Kim, P. Petreczky: JHEP 1811 (2018) 088

Real-time QQ evol. in local thermal equilibrium

Beyond Schrödinger:

Open-quantum-systems
Lindblad equation

Connecting OQS to EFT language of potential

with Y.Akamatsu et.al. JHEP 1807 (2018) 029 with S.Kajimoto et.al. PRD97 (2018) 014003 with T. Miura et.al. (in progress)

Properties of equilibrium QQ

Robust in-medium masses from lattice NRQCD

In-medium QQ potential

Improved extraction from realistic lattice QCD

Novel parametrization of V(R) for use in phenomenology

with P. Petreczky, J. Weber: NPA982 (2019) 735 with D. Lafferty arXiv:1906.00035

with S.Kim, P. Petreczky: JHEP 1811 (2018) 088

Exploit
$$\frac{T}{m_Q} \ll 1$$
, $\frac{\Lambda_{\rm QCD}}{m_Q} \ll 1$

to treat heavy quarks non-relativistically

Lattice QCD simulation with QQ still too costly for bottom quarks

$$rac{T}{m_Q} \ll 1, \; rac{\Lambda_{
m QCD}}{m_Q} \ll 1$$

to treat heavy quarks non-relativistically

Lattice QCD simulation with QQ still too costly for bottom quarks

$$rac{T}{m_Q} \ll 1, \; rac{\Lambda_{
m QCD}}{m_Q} \ll 1$$

to treat heavy quarks non-relativistically

QQ in NRQCD effective theory

- Lattice Non-Relativistic QCD (NRQCD) well established at T=0, applicable at T>0
 - systematic expansion of QCD action in 1/moa Thacker, Lepage Phys.Rev. D43 (1991) 196-208
 - our implementation uses O(1/(m_Qa)³) and leading order Wilson coefficients

Exploit
$$\frac{T}{m_Q} \ll 1$$
, $\frac{\Lambda_{\rm QCD}}{m_Q} \ll 1$

to treat heavy quarks non-relativistically

QQ in NRQCD effective theory

- Lattice Non-Relativistic QCD (NRQCD) well established at T=0, applicable at T>0
 - systematic expansion of QCD action in 1/moa Thacker, Lepage Phys.Rev. D43 (1991) 196-208
 - our implementation uses O(1/(m_Oa)³) and leading order Wilson coefficients
- Realistic N_f=2+1 HISQ lattices for the QCD medium by HotQCD PRD90 (2014) 094503

$$m_{\pi}$$
=161MeV T= [140 - 407] MeV m_{b} a= [2.759 - 1.559]
 $T=0: N_{\tau}$ =32-64 T= [140 - 251] MeV m_{c} a= [0.757 - 0.427]

$$m_{\pi}$$
=161MeV T= [140 - 407] MeV m_{b} a= [2.759 - 1.559]

use adaptive step size to stabilize NRQCD expansion

T>0.483x12

The direct reconstruction challenge U

Quarkonium spectral function

The direct reconstruction challenge U

The direct reconstruction challenge [1]

The direct reconstruction challenge [[

Lattice QCD simulations are similar to a (very) imperfect detector

Euclidean time correlation function

The direct reconstruction challenge [[

Lattice QCD simulations are similar to a (very) imperfect detector

Extraction of spectra ill-posed unfolding problem: here via Bayesian inference

The direct reconstruction challenge [1]

- Extraction of spectra ill-posed unfolding problem: here via Bayesian inference
- Access to Euclidean time diminishes as T increases different artifacts as @ T=0

Inversion of Laplace transform required – highly ill-posed

$$D(au) = \int_{-2m_O}^{\infty} \, d\omega e^{-\omega au}
ho(\omega)$$

Inversion of Laplace transform required – highly ill-posed

$$D_i = \sum_{I=1}^{N_\omega} \Delta \omega_I \, e^{-\omega_I au_i}
ho_I$$

- 1. N_{ω} parameters $\rho_{l} >> N_{\tau}$ datapoints
- 2. data D_i has finite precision

Inversion of Laplace transform required – highly ill-posed

$$D_i = \sum_{I=1}^{N_\omega} \Delta \omega_I \, e^{-\omega_I au_i}
ho_I$$

- 1. N_{ω} parameters $\rho_{l} >> N_{\tau}$ datapoints
- 2. data D_i has finite precision
- Regularize this task using prior information Bayes introduces prior $P[\rho|I] = \exp[S]$ M. Jarrell, J. Gubernatis, Physics Reports 269 (3) (1996)

$$P[
ho|D,I] \propto P[D|
ho,I]P[
ho|I] \qquad rac{\delta P[
ho|D,I]}{\delta
ho}igg|_{
ho=
ho^{\mathsf{BR}}} = 0$$

$$\frac{\delta P[\rho|D,I]}{\delta \rho}\bigg|_{\rho=\rho^{\mathsf{BR}}}=0$$

Inversion of Laplace transform required – highly ill-posed

$$D_i = \sum_{I=1}^{N_\omega} \Delta \omega_I \, e^{-\omega_I au_i}
ho_I$$

- 1. N_{ω} parameters $\rho_{l} >> N_{\tau}$ datapoints
- 2. data D_i has finite precision
- Pegularize this task using prior information Bayes introduces prior P[ρ|I]=exp[S]

 M. Jarrell, J. Gubernatis, Physics Reports 269 (3) (1996)

$$P[
ho|D,I] \propto P[D|
ho,I]P[
ho|I] \qquad rac{\delta P[
ho|D,I]}{\delta
ho}igg|_{
ho=
ho^{\mathsf{BR}}} = 0$$

BR prior enforces: ρ positive definite, smoothness of ρ, result independent of units

Y.Burnier, A.R.
$$S_{BR}=lpha\int d\omega \Big(1-rac{
ho}{m}+log\Big[rac{
ho}{m}\Big]\Big)$$

Inversion of Laplace transform required – highly ill-posed

$$D_i = \sum_{I=1}^{N_\omega} \Delta \omega_I \, e^{-\omega_I au_i}
ho_I$$

- 1. N_{ω} parameters $\rho_{I} >> N_{\tau}$ datapoints
- 2. data D_i has finite precision
- Pegularize this task using prior information Bayes introduces prior P[ρ|I]=exp[S]

 M. Jarrell, J. Gubernatis, Physics Reports 269 (3) (1996)

$$P[
ho|D,I] \propto P[D|
ho,I]P[
ho|I] \qquad rac{\delta P[
ho|D,I]}{\delta
ho}igg|_{
ho=
ho^{\mathsf{BR}}} = 0$$

BR prior enforces: ρ positive definite, smoothness of ρ, result independent of units

Y.Burnier, A.R.
$$S_{BR} = lpha \int d\omega \Big(1 - rac{
ho}{m} + log \Big[rac{
ho}{m}\Big]\Big)$$

BR prior: better accuracy in sharp peak structures than MEM or BG but prone to ringing

Inversion of Laplace transform required – highly ill-posed

$$D_i = \sum_{I=1}^{N_\omega} \Delta \omega_I \, e^{-\omega_I au_i}
ho_I$$

- 1. N_{ω} parameters $\rho_{l} >> N_{\tau}$ datapoints
- 2. data D_i has finite precision
- Pegularize this task using prior information Bayes introduces prior P[ρ|I]=exp[S]

 M. Jarrell, J. Gubernatis, Physics Reports 269 (3) (1996)

$$P[
ho|D,I] \propto P[D|
ho,I]P[
ho|I] \qquad \left. rac{\delta P[
ho|D,I]}{\delta
ho}
ight|_{
ho=
ho^{\mathsf{BR}}} = 0$$

BR prior enforces: ρ positive definite, smoothness of ρ, result independent of units

Y.Burnier, A.R.
$$S_{BR} = lpha \int d\omega \Big(1 - rac{
ho}{m} + log \Big[rac{
ho}{m}\Big]\Big)$$

BR prior: better accuracy in sharp peak structures than MEM or BG but prone to ringing

C.Fischer, J. Pawlowski, A.R., C. Welzbacher PRD98 (2018) 014009
$$S_{BR}^{smooth} = lpha \int d\omega \left(\kappa \left(rac{\partial
ho}{\partial \omega}
ight)^2 + 1 - rac{
ho}{m} + log \left[rac{
ho}{m}
ight]
ight)$$

Inversion of Laplace transform required – highly ill-posed

$$D_i = \sum_{I=1}^{N_\omega} \Delta \omega_I \, e^{-\omega_I au_i}
ho_I$$

- 1. N_{ω} parameters $\rho_{l} >> N_{\tau}$ datapoints
- 2. data D_i has finite precision
- Pegularize this task using prior information Bayes introduces prior P[ρ|I]=exp[S]

 M. Jarrell, J. Gubernatis, Physics Reports 269 (3) (1996)

$$P[
ho|D,I] \propto P[D|
ho,I]P[
ho|I] \qquad \left. rac{\delta P[
ho|D,I]}{\delta
ho}
ight|_{
ho=
ho^{\mathsf{BR}}} = 0$$

BR prior enforces: ρ positive definite, smoothness of ρ, result independent of units

Y.Burnier, A.R.
$$S_{BR} = lpha \int d\omega \Big(1 - rac{
ho}{m} + log \Big[rac{
ho}{m}\Big]\Big)$$

BR prior: better accuracy in sharp peak structures than MEM or BG but prone to ringing

C.Fischer, J. Pawlowski, A.R., C. Welzbacher PRD98 (2018) 014009
$$S_{BR}^{smooth} = \alpha \int d\omega \left(\kappa \left(\frac{\partial \rho}{\partial \omega}\right)^2 + 1 - \frac{\rho}{m} + log\left[\frac{\rho}{m}\right]\right)$$

Application of different approaches improves understanding of regularization artifacts

NRQCD Euclidean correlators

Non-rel. propagator of a single heavy quark G

Davies, Thacker Phys.Rev. D45 (1992)

NRQCD Euclidean correlators

Non-rel. propagator of a single heavy quark G

Davies, Thacker Phys.Rev. D45 (1992)

QQ propagator projected to a certain channel

"correlator of QQ wavefct.

$$D_{J/\psi}(\tau) \, \triangleq \, <\!\! \psi_{J/\psi} \, (\tau) \psi^{\dagger}_{J/\psi} \, (0) \!\! > \, ``$$

Brambilla et. al. Rev.Mod.Phys. 77 (2005) 1423

NRQCD Euclidean correlators

Non-rel. propagator of a single heavy quark G

Davies, Thacker Phys.Rev. D45 (1992)

QQ propagator projected to a certain channel "correlator of QQ wavefct. $D_{J/\psi}(\tau) \triangleq \langle \psi_{J/\psi}(\tau) \psi^{\dagger}_{J/\psi}(0) \rangle$ "

Brambilla et. al. Rev. Mod. Phys. 77 (2005) 1423

Euclidean correlation functions at T=0 and T>0

Correlator ratios (T>0 vs T=0)

raw lattice NRQCD results

Correlator ratios (T>0 vs T=0)

raw lattice NRQCD results

In-medium modification hierarchically ordered with vacuum binding energy

Correlator ratios (T>0 vs T=0)

raw lattice NRQCD results

Correlator ratio approximated from the lattice potential

- In-medium modification hierarchically ordered with vacuum binding energy
- Upward bend compatible with lower in-medium mass (also seen in previous studies)

Lattice NRQCD spectral functions

bb S-wave T>0 spectra

Lattice NRQCD spectral functions

Crucial step: defining correct T=0 baseline in presence of methods artifacts

Lattice NRQCD spectral functions

- Crucial step: defining correct T=0 baseline in presence of methods artifacts
- For the first time consistent negative in medium mass shifts ordered by E_{bind}

How to improve in the future?

Lattice community favorite strategy: more simulations @ smaller lattice spacing?

No significant improvement of bound state reconstruction on finer lattices

How to improve in the future?

Lattice community favorite strategy: more simulations @ smaller lattice spacing?

- No significant improvement of bound state reconstruction on finer lattices
- Reached the onset of exponential difficulty: progress needs conceptually new ideas

The real-time interquark potential

$$rac{T}{m_Q} \ll 1$$
, $rac{\Lambda_{
m QCD}}{m_Q} \ll 1$

to treat heavy quarks non-relativistically

Relativistic T>0 field theory

	Brambilla et.al. Rev.Mod.Phys. 77 (2005) 1423	
QCD	NRQCD	pNRQCD
Dirac fields	Pauli fields	Singlet/Octet

$$\psi$$
, ψ^{\dagger} , χ , χ^{\dagger}

$$i \vartheta_t \langle \psi_s(t) \psi_s(0) \rangle = \Big(V^{\rm QCD}(R) + \mathcal{O}(m_Q^{-1}) + \Theta(R,t) \Big) \langle \psi_s(t) \psi_s(0) \rangle$$

$$\frac{T}{m_{\rm O}} \ll 1$$
, $\frac{\Lambda_{\rm QCD}}{m_{\rm O}} \ll 1$

to treat heavy quarks non-relativistically

Relativistic T>0 field theory

	Brambilla et.al.	Brambilla et.al. Rev.Mod.Phys. 77 (2005) 1423		
QCD	NRQCD	pNRQCD		
Dirac fields	Pauli fields	Singlet/Octet		

$$Q(x), \bar{Q}(x)$$

$$Q(x)$$
, $\bar{Q}(x)$ ψ , ψ^{\dagger} , χ , χ^{\dagger}

$$\psi_S(R,t), \psi_O(R,t)$$

$$i \vartheta_t \langle \psi_s(t) \psi_s(0) \rangle = \Big(V^{\rm QCD}(R) + \mathcal{O}(m_Q^{-1}) + \Theta(R,t) \Big) \langle \psi_s(t) \psi_s(0) \rangle$$

V(R) is lowest term in a systematic velocity v=p/m expansion

c.f. potential as interaction kernel in Lipmann Schwinger series in talk by Shuai Liu

$$\frac{T}{m_O} \ll 1$$
, $\frac{\Lambda_{\rm QCD}}{m_O} \ll 1$

to treat heavy quarks non-relativistically

Relativistic T>0 field theory	
-------------------------------	--

QCD
Dirac fields
$O(\omega)$ $\bar{O}(\omega)$

NRQCD
Pauli fields

$$Q(x), \bar{Q}(x)$$
 $\psi, \psi^{\dagger}, \chi, \chi^{\dagger}$

Brambilla et.al. Rev.Mod.Phys. 77 (2005) 1423

$$\psi_S(R,t), \psi_O(R,t)$$

pNRQCD

Singlet/Octet

$$i\partial_t \langle \psi_s(t) \psi_s(0) \rangle = \Big(V^{\rm QCD}(R) + \mathcal{O}(m_Q^{-1}) + \Theta(R,t) \Big) \langle \psi_s(t) \psi_s(0) \rangle$$

V(R) is lowest term in a systematic velocity v=p/m expansion

c.f. potential as interaction kernel in Lipmann Schwinger series in talk by Shuai Liu

Matching to underlying QCD in the infinite mass limit: Wilson loop

$$\langle \psi_S(R,t)\psi_S^*(R,0)
angle_{
m pNRQCD}\equiv W_\square(R,t)=\left\langle {
m Tr}\left[\exp\left(-ig\int_\square dx^\mu A_\mu(x)
ight)
ight]
ight
angle_{
m OCD}$$

Exploit $\frac{T}{m_Q} \ll 1$, $\frac{\Lambda_{QCD}}{m_Q} \ll 1$ to treat heavy quarks non-relativistically

	Brambilla et.al. Re	Brambilla et.al. Rev.Mod.Phys. 77 (2005) 1423	
QCD	NRQCD	pNRQCD	
Dirac fields	Pauli fields	Singlet/Octet	
$Q(x), \bar{Q}(x)$	ψ , ψ^\dagger , χ , χ^\dagger	$\psi_S(R,t),\psi_O(R,t)$	

$$i \vartheta_t \langle \psi_s(t) \psi_s(0) \rangle = \Big(V^{\rm QCD}(R) + \mathcal{O}(m_Q^{-1}) + \Theta(R,t) \Big) \langle \psi_s(t) \psi_s(0) \rangle$$

V(R) is lowest term in a systematic velocity v=p/m expansion

c.f. potential as interaction kernel in Lipmann Schwinger series in talk by Shuai Liu

Matching to underlying QCD in the infinite mass limit: Wilson loop

$$\langle \psi_S(R,t)\psi_S^*(R,0)\rangle_{\mathsf{pNRQCD}} \equiv W_{\square}(R,t) = \left\langle \mathsf{Tr} \left[\mathsf{exp} \left(-ig \int_{\square} dx^{\mu} A_{\mu}(x) \right) \right] \right\rangle_{\mathsf{QCD}}$$

Wilson loop: potential emerges at late times

$$V(R) = \lim_{t \to \infty} \frac{i\partial_t W_{\square}(R, t)}{W_{\square}(R, t)}$$

Exploit $\frac{T}{m_Q} \ll 1$, $\frac{\Lambda_{\rm QCD}}{m_Q} \ll 1$ to treat heavy quarks non-relativistically

Relativistic T>0 field theory	
-------------------------------	--

	Brambilla et.al. Rev. Mod. Phys. 77 (2005) 1423	
QCD	NRQCD	pNRQCD
Dirac fields	Pauli fields	Singlet/Octet
$Q(x), \bar{Q}(x)$	ψ , ψ^\dagger , χ , χ^\dagger	$\psi_S(R,t),\psi_O(R,t)$

$$i \vartheta_t \langle \psi_s(t) \psi_s(0) \rangle = \Big(V^{\rm QCD}(R) + \mathcal{O}(m_Q^{-1}) + \Theta(R,t) \Big) \langle \psi_s(t) \psi_s(0) \rangle$$

V(R) is lowest term in a systematic velocity v=p/m expansion

c.f. potential as interaction kernel in Lipmann Schwinger series in talk by Shuai Liu

Matching to underlying QCD in the infinite mass limit: Wilson loop

$$\langle \psi_S(R,t)\psi_S^*(R,0)\rangle_{\mathsf{pNRQCD}} \equiv W_{\square}(R,t) = \left\langle \mathsf{Tr} \left[\mathsf{exp} \left(-ig \int_{\square} dx^{\mu} A_{\mu}(x) \right) \right] \right\rangle_{\mathsf{OCD}}$$

Wilson loop: potential emerges at late times

$$V(R) = \lim_{t \to \infty} \frac{i\partial_t W_{\square}(R, t)}{W_{\square}(R, t)} \in \mathbb{C}$$

Im[V]: Laine et al. JHEP03 (2007) 054; Beraudo et. al. NPA 806:312,2008 Brambilla et.al. PRD 78 (2008) 014017

How to connect to the Euclidean domain: spectral functions

A.R., T.Hatsuda & S.Sasaki PRL 108 (2012) 162001

$$W_{\square}(\mathbf{R}, \mathbf{t}) = \int_{-\infty}^{\infty} d\omega \, e^{-i\omega t} \, \rho_{\square}(\mathbf{R}, \omega)$$

$$W_{\square}(\mathbf{R}, \mathbf{t}) = \int_{-\infty}^{\infty} d\omega \, e^{-i\omega t} \, \rho_{\square}(\mathbf{R}, \omega) \qquad \longleftrightarrow \qquad W_{\square}(\mathbf{R}, \tau) = \int_{-\infty}^{\infty} d\omega \, e^{-\omega \tau} \, \rho_{\square}(\mathbf{R}, \omega)$$

How to connect to the Euclidean domain: spectral functions

A.R., T.Hatsuda & S.Sasaki PRL 108 (2012) 162001

$$W_{\square}(\mathbf{R}, \mathbf{t}) = \int_{-\infty}^{\infty} d\omega \, e^{-i\omega t} \, \rho_{\square}(\mathbf{R}, \omega)$$

$$W_{\square}(\mathbf{R}, \mathbf{t}) = \int_{-\infty}^{\infty} d\omega \, e^{-i\omega t} \, \rho_{\square}(\mathbf{R}, \omega) \qquad \qquad W_{\square}(\mathbf{R}, \tau) = \int_{-\infty}^{\infty} d\omega \, e^{-\omega \tau} \, \rho_{\square}(\mathbf{R}, \omega)$$

Spectral Decomposition

$$V^{QCD}(R) = \lim_{t \to \infty} \frac{\int_{-\infty}^{\infty} d\omega \, \omega \, e^{-i\omega t} \, \rho_{\square}(R,\omega)}{\int_{-\infty}^{\infty} d\omega \, e^{-i\omega t} \, \rho_{\square}(R,\omega)}$$

A.R., T.Hatsuda & S.Sasaki PoS LAT2009 (2009) 162

How to connect to the Euclidean domain: spectral functions

A.R., T.Hatsuda & S.Sasaki PRL 108 (2012) 162001

$$W_{\square}(\mathbf{R}, \mathbf{t}) = \int_{-\infty}^{\infty} d\omega \, e^{-i\omega t} \, \rho_{\square}(\mathbf{R}, \omega) \qquad \qquad W_{\square}(\mathbf{R}, \tau) = \int_{-\infty}^{\infty} d\omega \, e^{-\omega \tau} \, \rho_{\square}(\mathbf{R}, \omega)$$

$$W_{\square}(\mathsf{R},\tau) = \int_{-\infty}^{\infty} \mathrm{d}\omega \, e^{-\omega \tau} \, \rho_{\square}(\mathsf{R},\omega)$$

Spectral Decomposition

$$V^{QCD}(R) = \lim_{t \to \infty} \frac{\int_{-\infty}^{\infty} d\omega \, \omega \, e^{-i\omega t} \, \rho_{\square}(R,\omega)}{\int_{-\infty}^{\infty} d\omega \, e^{-i\omega t} \, \rho_{\square}(R,\omega)}$$

A.R., T.Hatsuda & S.Sasaki PoS LAT2009 (2009) 162

well defined V(R) spectral function

For technical details see Y.B., A.R. PRD86 (2012) 051503

$$V(R) = \omega_0(R) - i\Gamma_0(R)$$

How to connect to the Euclidean domain: spectral functions

A.R., T.Hatsuda & S.Sasaki PRL 108 (2012) 162001

$$W_{\square}(\mathbf{R}, \mathbf{t}) = \int_{-\infty}^{\infty} d\omega \, e^{-i\omega t} \, \rho_{\square}(\mathbf{R}, \omega)$$

$$W_{\square}(\mathbf{R}, \mathbf{t}) = \int_{-\infty}^{\infty} d\omega \, e^{-i\omega t} \, \rho_{\square}(\mathbf{R}, \omega) \qquad \longleftrightarrow \qquad W_{\square}(\mathbf{R}, \tau) = \int_{-\infty}^{\infty} d\omega \, e^{-\omega \tau} \, \rho_{\square}(\mathbf{R}, \omega)$$

Spectral Decomposition

$$V^{QCD}(R) = \lim_{t \to \infty} \frac{\int_{-\infty}^{\infty} d\omega \, \omega \, e^{-i\omega t} \, \rho_{\square}(R,\omega)}{\int_{-\infty}^{\infty} d\omega \, e^{-i\omega t} \, \rho_{\square}(R,\omega)}$$

A.R., T.Hatsuda & S.Sasaki PoS LAT2009 (2009) 162

well defined V(R) if low lying Breit-Wigner present in Wilson loop spectral function

For technical details see Y.B., A.R. PRD86 (2012) 051503

$$V(R) = \omega_0(R) - i\Gamma_0(R)$$

Spectral Reconstruction

In case of usual ΔW/W=10⁻² statistical uncertatinty in W₋: Bayesian inference

incorporate prior information to regularize the inversion task (BR method)

In case of small $\Delta W/W < 10^{-3}$ statistical uncertatinty in W_n also **Pade approximation**

> exploit the analyticity of the Wilson correlator to extract spectra

Latest results on the lattice potential

Lattices with dynamical u,d,s quarks (HISQ action, HotQCD & TUMQCD)

A. Bazavov et.al. PRD97 (2018) 014510, HotQCD PRD90 (2014) 094503

- realistic m_{π} ~161MeV (T=151-1451MeV)
- fixed box (N_s=48 N_T=12, N_T=16) & very high statistics 4000-9000 realizations
- Pade based extraction for Re[V] possible

Latest results on the lattice potential

Lattices with dynamical u,d,s quarks (HISQ action, HotQCD & TUMQCD)

A. Bazavov et.al. PRD97 (2018) 014510, HotQCD PRD90 (2014) 094503

- realistic m_{π} ~161MeV (T=151-1451MeV)
- fixed box (N_s=48 N_T=12, N_T=16) & very high statistics 4000-9000 realizations
- Pade based extraction for Re[V] possible

Smooth transition from Cornell @ T=0 to Debye screened @ T>T_C

Latest results on the lattice potential

Lattices with dynamical u,d,s quarks (HISQ action, HotQCD & TUMQCD)

A. Bazavov et.al. PRD97 (2018) 014510, HotQCD PRD90 (2014) 094503

- realistic m_{π} ~161MeV (T=151-1451MeV)
- fixed box (N_s=48 N_T=12, N_T=16) & very high statistics 4000-9000 realizations
- Pade based extraction for Re[V] possible

- Smooth transition from Cornell @ T=0 to Debye screened @ T>T_C
- Finite Im[V] above T_c present

For use in phenomenology applications: analytic expression for Re[V] and Im[V]

$$V_{Q\bar{Q}}^{T=0}(R) = V_C(R) + V_S(R) = -\frac{\alpha_S}{r} + \sigma r + c$$

Strategy:

 α_s , σ and c are vacuum prop. and do not change with T

For use in phenomenology applications: analytic expression for Re[V] and Im[V]

$$V_{Q\bar{Q}}^{T=0}(R) = V_C(R) + V_S(R) = -\frac{\alpha_S}{r} + \sigma r + c$$

$$\mathcal{G}_a[V(R)] = ec{
abla} \left(rac{ec{
abla}V(R)}{R^{a+1}}
ight) = -4\pi q \delta^{(3)}(ec{R})$$

Coulombic: a=-1 $q=\alpha_s$

$$ec{
abla} \Big(ec{
abla} V_{C}(R) \Big) = -4\pi lpha_{S} \delta(ec{R})$$

String-like: a=+1 $q=\sigma$

$$ec{
abla} \left(rac{ec{
abla} V_{\mathcal{S}}(R)}{R^2}
ight) = -4\pi\sigma\delta(ec{R})$$

Strategy:

 α_s , σ and c are vacuum prop. and do not change with T

$$V(R) = aqR^a$$

V. V. Dixit, Mod. Phys. Lett. A 5, 227 (1990)

For use in phenomenology applications: analytic expression for Re[V] and Im[V]

$$V_{Q\bar{Q}}^{T=0}(R) = V_C(R) + V_S(R) = -\frac{\alpha_S}{r} + \sigma r + c$$

$$\mathcal{G}_a[V(R)] = ec{
abla} \left(rac{ec{
abla}V(R)}{R^{a+1}}
ight) = -4\pi q \delta^{(3)}(ec{R})$$

Coulombic: a=-1 $q=\alpha_s$

$$ec{
abla} \left(ec{
abla} V_{\mathcal{C}}(R)
ight) = -4\pi lpha_{\mathcal{S}} \delta(ec{R})$$

String-like: a=+1 $q=\sigma$

$$ec{
abla}\left(rac{ec{
abla}V_{S}(R)}{R^{2}}
ight)=-4\pi\sigma\delta(ec{R})$$

Strategy:

 α_{s} , σ and c are vacuum prop. and do not change with T

$$V(R) = aqR^a$$

V. V. Dixit. Mod. Phys. Lett. A 5, 227 (1990)

Immerse non-perturbative charge in weak coupling HTL medium: permittivity ε original idea: Y.Burnier, A.R. Phys.Lett. B753 (2016) 232 improved derivation D.Lafferty and A.R. arXiv:1906.00035

$$V^{med}({f p}) = V^{vac}({f p})/\epsilon({f p}) \qquad \epsilon^{-1}(ec p, m_D) = rac{p^2}{p^2 + m_D^2} - i\pi T rac{p m_D^2}{(p^2 + m_D^2)^2}$$

For use in phenomenology applications: analytic expression for Re[V] and Im[V]

$$V_{Q\bar{Q}}^{T=0}(R) = V_C(R) + V_S(R) = -\frac{\alpha_S}{r} + \sigma r + c$$

$$\mathcal{G}_a[V(R)] = \vec{
abla} \left(\frac{\vec{
abla}V(R)}{R^{a+1}} \right) = -4\pi q \delta^{(3)}(\vec{R})$$

Coulombic: a=-1 $q=\alpha_s$

$$ec{
abla} \left(ec{
abla} V_{C}(R)
ight) = -4\pi lpha_{S} \delta(ec{R})$$

String-like: a=+1 $q=\sigma$

$$ec{
abla}\left(rac{ec{
abla}V_S(R)}{R^2}
ight) = -4\pi\sigma\delta(ec{R})$$

Strategy:

 α_{s} , σ and c are vacuum prop. and do not change with T

$$V(R) = aqR^a$$

V. V. Dixit. Mod. Phys. Lett. A 5, 227 (1990)

Immerse non-perturbative charge in weak coupling HTL medium: permittivity ε original idea: Y.Burnier, A.R. Phys.Lett. B753 (2016) 232 improved derivation D.Lafferty and A.R. arXiv:1906.00035

$$V^{med}({f p}) = V^{vac}({f p})/\epsilon({f p}) \qquad \epsilon^{-1}(ec p, m_D) = rac{p^2}{p^2 + m_D^2} - i\pi T rac{p m_D^2}{(p^2 + m_D^2)^2}$$

$$\mathcal{G}_a[V^{med}(\mathbf{r})] = \mathcal{G}_a \int d^3y \left(V^{vac}(\mathbf{r} - \mathbf{y})\epsilon^{-1}(\mathbf{y})\right) = 4\pi q \epsilon^{-1}(\mathbf{r}, m_D)$$

For use in phenomenology applications: analytic expression for Re[V] and Im[V]

$$V_{Q\bar{Q}}^{T=0}(R) = V_C(R) + V_S(R) = -\frac{\alpha_S}{r} + \sigma r + c$$

$$\mathcal{G}_a[V(R)] = \vec{
abla} \left(rac{\vec{
abla} V(R)}{R^{a+1}}
ight) = -4\pi q \delta^{(3)}(\vec{R})$$

Coulombic: a=-1 $q=\alpha_s$

$$ec{
abla} \left(ec{
abla} V_{\mathcal{C}}(R)
ight) = -4\pi lpha_{\mathcal{S}} \delta(ec{R})$$

String-like: a=+1 $q=\sigma$

$$ec{
abla}\left(rac{ec{
abla}V_{S}(R)}{R^{2}}
ight)=-4\pi\sigma\delta(ec{R})$$

Strategy:

 α_{s} , σ and c are vacuum prop. and do not change with T

$$V(R) = aqR^a$$

V. V. Dixit. Mod. Phys. Lett. A 5, 227 (1990)

Immerse non-perturbative charge in weak coupling HTL medium: permittivity ε original idea: Y.Burnier, A.R. Phys.Lett. B753 (2016) 232 improved derivation D.Lafferty and A.R. arXiv:1906.00035

$$V^{med}(\mathbf{p}) = V^{vac}(\mathbf{p})/\epsilon(\mathbf{p}) \qquad \epsilon^{-1}(\vec{p},m_D) = rac{p^2}{p^2+m_D^2} - i\pi T rac{pm_D^2}{(p^2+m_D^2)^2}$$

$$\mathcal{G}_a[V^{med}(\mathbf{r})] = \mathcal{G}_a \int d^3y \left(V^{vac}(\mathbf{r} - \mathbf{y})\epsilon^{-1}(\mathbf{y})\right) = 4\pi q \epsilon^{-1}(\mathbf{r}, m_D)$$

3 vacuum parameters and 1 temperature dependent m_D fix both Re[V] and Im[V].

Gauss-law solution to Re[V] & Im[V] U

Gauss-Law result allows to fit Re[V] data even in the non-perturbative regime

D.Lafferty and A.R. arXiv:1906.00035

Gauss-law solution to Re[V] & Im[V] U

Gauss-Law result allows to fit Re[V] data even in the non-perturbative regime

D.Lafferty and A.R. arXiv:1906.00035

m_D defined from Re[V] allows to compute Gauss law prediction for Im[V]

Gauss-law solution to Re[V] & Im[V] U

Gauss-Law result allows to fit Re[V] data even in the non-perturbative regime

D.Lafferty and A.R. arXiv:1906.00035

- m_D defined from Re[V] allows to compute Gauss law prediction for Im[V]
- recently extend the Gauss law to model quarkonium at finite velocity & μ_B

- Need a general approach to describe quarkonium coupled to a thermal medium
 - Overall system is closed, hermitean Hamiltonian: von Neumann equation

$$H = H_{Qar{Q}} \otimes I_{med} + I_{Qar{Q}} \otimes H_{med} + H_{int} \quad rac{d
ho}{dt} = -i[H,
ho]$$

- Need a general approach to describe quarkonium coupled to a thermal medium
 - Overall system is closed, hermitean Hamiltonian: von Neumann equation

$$H = H_{Qar{Q}} \otimes I_{med} + I_{Qar{Q}} \otimes H_{med} + H_{int} \quad rac{d
ho}{dt} = -i[H,
ho]$$

Dynamics of the reduced QQbar system:

for an EFT result see Brambilla et.al. PRD96 (2017), 034021

$$ho_{Qar{Q}}=\mathsf{Tr}_{med}ig[
hoig]$$

$$rac{d
ho_{Qar{Q}}}{dt}=\widehat{q}$$

- Need a general approach to describe quarkonium coupled to a thermal medium
 - Overall system is closed, hermitean Hamiltonian: von Neumann equation

$$H = H_{Qar{Q}} \otimes I_{med} + I_{Qar{Q}} \otimes H_{med} + H_{int} \quad rac{d
ho}{dt} = -i[H,
ho]$$

- $ho_{Qar{Q}} = \mathsf{Tr}_{med}ig[
 hoig]$ Dynamics of the reduced QQbar system: for an EFT result see Brambilla et.al. PRD96 (2017), 034021
- see Xiaojun Yao's talk Very versatile: time scale hierarchies allow to derive simplified description on Boltzmann eq.

- Need a general approach to describe quarkonium coupled to a thermal medium
 - Overall system is closed, hermitean Hamiltonian: von Neumann equation

$$H = H_{Qar{Q}} \otimes I_{med} + I_{Qar{Q}} \otimes H_{med} + H_{int} \quad rac{d
ho}{dt} = -i[H,
ho]$$

- Dynamics of the reduced QQbar system: $\rho_{Q\bar{Q}} = \text{Tr}_{med}[\rho]$ $\frac{d\rho_{Q\bar{Q}}}{dt} = ?$ for an EFT result see Brambilla et.al. PRD96 (2017), 034021
- see Xiaojun Yao's talk Very versatile: time scale hierarchies allow to derive simplified description on Boltzmann eg.
- Derivation via path integral formalism: Feynman-Vernon influence functional for details see Y. Akamatsu, Phys.Rev. D87 (2013) 4, 045016 and arXiv:1403.5783

$$\rho(t, x, y, X, Y) = \int dx_0 dy_0 dX_0 dY_0 \rho(0, x_0, y_0, X_0, Y_0) \int_{x_0, y_0, X_0, Y_0}^{x, y, X, Y} \mathcal{D}[\bar{x}, \bar{y}, \bar{X}, \bar{Y}] e^{iS[\bar{x}, \bar{X}] - iS[\bar{y}, \bar{Y}]}$$

- Need a general approach to describe quarkonium coupled to a thermal medium
 - Overall system is closed, hermitean Hamiltonian: von Neumann equation

$$H = H_{Qar{Q}} \otimes I_{med} + I_{Qar{Q}} \otimes H_{med} + H_{int} \quad rac{d
ho}{dt} = -i[H,
ho]$$

- Upper Dynamics of the reduced QQbar system: $\rho_{Q\bar{Q}} = \operatorname{Tr}_{med}[\rho]$ $\frac{d\rho_{Q\bar{Q}}}{dt} = ?$ for an EFT result see Brambilla et.al. PRD96 (2017), 034021
- see Xiaojun Yao's talk Very versatile: time scale hierarchies allow to derive simplified description on Boltzmann eg.
- Derivation via path integral formalism: Feynman-Vernon influence functional for details see Y. Akamatsu, Phys.Rev. D87 (2013) 4, 045016 and arXiv:1403.5783

$$\rho(t, x, y, X, Y) = \int dx_0 dy_0 dX_0 dY_0 \rho(0, x_0, y_0, X_0, Y_0) \int_{x_0, y_0, X_0, Y_0}^{x, y, X, Y} \mathcal{D}[\bar{x}, \bar{y}, \bar{X}, \bar{Y}] e^{iS[\bar{x}, \bar{X}] - iS[\bar{y}, \bar{Y}]}$$

$$ho_{Q\bar{Q}}(t,x,y) = \int dXdY \delta(X-Y)
ho(t,x,y,X,Y)$$

- Need a general approach to describe quarkonium coupled to a thermal medium
 - Overall system is closed, hermitean Hamiltonian: von Neumann equation

$$H = H_{Qar{Q}} \otimes I_{med} + I_{Qar{Q}} \otimes H_{med} + H_{int} \quad rac{d
ho}{dt} = -i[H,
ho]$$

- Upper Dynamics of the reduced QQbar system: $\rho_{Q\bar{Q}} = \operatorname{Tr}_{med}[\rho]$ $\frac{d\rho_{Q\bar{Q}}}{dt} = ?$ for an EFT result see Brambilla et.al. PRD96 (2017), 034021
- see Xiaojun Yao's talk Very versatile: time scale hierarchies allow to derive simplified description
- Derivation via path integral formalism: Feynman-Vernon influence functional for details see Y. Akamatsu, Phys.Rev. D87 (2013) 4, 045016 and arXiv:1403.5783

$$\rho(t, x, y, X, Y) = \int dx_0 dy_0 dX_0 dY_0 \rho(0, x_0, y_0, X_0, Y_0) \int_{x_0, y_0, X_0, Y_0}^{x, y, X, Y} \mathcal{D}[\bar{x}, \bar{y}, \bar{X}, \bar{Y}] e^{iS[\bar{x}, \bar{X}] - iS[\bar{y}, \bar{Y}]}$$

$$\rho_{Q\bar{Q}}(t,x,y) = \int dx_0 dy_0 \rho_{Q\bar{Q}}(0,x,y) \int_{x_0,y_0}^{x,y} \mathcal{D}[\bar{x},\bar{y}] e^{iS_{Q\bar{Q}}[\bar{x}]-iS_{Q\bar{Q}}[\bar{y}]+iS_{FV}[\bar{x},\bar{y}]}$$

- Need a general approach to describe quarkonium coupled to a thermal medium
 - Overall system is closed, hermitean Hamiltonian: von Neumann equation

$$H = H_{Qar{Q}} \otimes I_{med} + I_{Qar{Q}} \otimes H_{med} + H_{int} \quad rac{d
ho}{dt} = -i[H,
ho]$$

- Upper Dynamics of the reduced QQbar system: $\rho_{Q\bar{Q}} = \operatorname{Tr}_{med}[\rho]$ $\frac{d\rho_{Q\bar{Q}}}{dt} = ?$ for an EFT result see Brambilla et.al. PRD96 (2017), 034021
- see Xiaojun Yao's talk Very versatile: time scale hierarchies allow to derive simplified description
- Derivation via path integral formalism: Feynman-Vernon influence functional for details see Y. Akamatsu, Phys.Rev. D87 (2013) 4, 045016 and arXiv:1403.5783

$$\rho(t, x, y, X, Y) = \int dx_0 dy_0 dX_0 dY_0 \rho(0, x_0, y_0, X_0, Y_0) \int_{x_0, y_0, X_0, Y_0}^{x, y, X, Y} \mathcal{D}[\bar{x}, \bar{y}, \bar{X}, \bar{Y}] e^{iS[\bar{x}, \bar{X}] - iS[\bar{y}, \bar{Y}]}$$

$$\rho_{Q\bar{Q}}(t,x,y) = \int dx_0 dy_0 \rho_{Q\bar{Q}}(0,x,y) \int_{x_0,y_0}^{x,y} \mathcal{D}[\bar{x},\bar{y}] e^{iS_{Q\bar{Q}}[\bar{x}]-iS_{Q\bar{Q}}[\bar{y}]} + \frac{iS_{FV}[\bar{x},\bar{y}]}{\text{medium - QQ}}$$

Use scale separation: m_Q > T heavy mass & weak coupling approximation

$$S_{FV} pprox S_{pot} igl[Re[V] igr] + S_{fluct} igl[Im[V] igr] + S_{diss} igl[Im[V] igr] + S_{LB}$$

Use scale separation: m_o > T heavy mass & weak coupling approximation

$$S_{FV} pprox S_{pot} [Re[V]] + S_{fluct} [Im[V]] + S_{diss} [Im[V]] + S_{LB}$$

In QM language corresponds to Markovian evolution by Lindblad equation

$$\frac{d}{dt}\rho_{Q\bar{Q}}(t) = -i\left[H_{Q\bar{Q}},\rho_{Q\bar{Q}}\right] + \sum_{i=1}^{N_{LB}} \gamma_i \left(\hat{L}_i \rho_{Q\bar{Q}} \hat{L}_i^{\dagger} - \frac{1}{2} \hat{L}_i \hat{L}_i^{\dagger} \rho_{Q\bar{Q}} - \frac{1}{2} \rho_{Q\bar{Q}} \hat{L}_i \hat{L}_i^{\dagger}\right)$$

Use scale separation: m_o > T heavy mass & weak coupling approximation

$$S_{FV} pprox S_{pot} igl[Re[V] igr] + S_{fluct} igl[Im[V] igr] + S_{diss} igl[Im[V] igr] + S_{LB}$$

In QM language corresponds to Markovian evolution by Lindblad equation

$$\frac{d}{dt}\rho_{Q\bar{Q}}(t) = -i\left[H_{Q\bar{Q}},\rho_{Q\bar{Q}}\right] + \sum_{i=1}^{N_{LB}} \gamma_i \left(\hat{L}_i \rho_{Q\bar{Q}} \hat{L}_i^{\dagger} - \frac{1}{2} \hat{L}_i \hat{L}_i^{\dagger} \rho_{Q\bar{Q}} - \frac{1}{2} \rho_{Q\bar{Q}} \hat{L}_i \hat{L}_i^{\dagger}\right)$$

At the moment model simply uses 0th order approximation S_{pot}[Re[V]-i Im[V]]

Use scale separation: m_o > T heavy mass & weak coupling approximation

$$S_{FV} pprox S_{pot}ig[Re[V]ig] + S_{fluct}ig[Im[V]ig] + S_{diss}ig[Im[V]ig] + S_{LB}$$

In QM language corresponds to Markovian evolution by Lindblad equation

$$\frac{d}{dt}\rho_{Q\bar{Q}}(t) = -i\left[H_{Q\bar{Q}},\rho_{Q\bar{Q}}\right] + \sum_{i=1}^{N_{LB}} \gamma_i \left(\hat{L}_i \rho_{Q\bar{Q}} \hat{L}_i^{\dagger} - \frac{1}{2}\hat{L}_i \hat{L}_i^{\dagger} \rho_{Q\bar{Q}} - \frac{1}{2}\rho_{Q\bar{Q}} \hat{L}_i \hat{L}_i^{\dagger}\right)$$

At the moment model simply uses 0th order approximation S_{pot}[Re[V]-i Im[V]]

Use scale separation: m_o > T heavy mass & weak coupling approximation

$$S_{FV} pprox S_{pot}[Re[V]] + S_{fluct}[Im[V]] + S_{diss}[Im[V]] + S_{LB}$$

In QM language corresponds to Markovian evolution by Lindblad equation

$$\frac{d}{dt}\rho_{Q\bar{Q}}(t) = -i\left[H_{Q\bar{Q}},\rho_{Q\bar{Q}}\right] + \sum_{i=1}^{N_{LB}} \gamma_i \left(\hat{L}_i \rho_{Q\bar{Q}} \hat{L}_i^{\dagger} - \frac{1}{2}\hat{L}_i \hat{L}_i^{\dagger} \rho_{Q\bar{Q}} - \frac{1}{2}\rho_{Q\bar{Q}} \hat{L}_i \hat{L}_i^{\dagger}\right)$$

At the moment model simply uses 0th order approximation S_{pot}[Re[V]-i Im[V]]

Comparison to 1st order approximation

Use scale separation: m_O > T heavy mass & weak coupling approximation

$$S_{FV} pprox S_{pot} igl[Re[V] igr] + S_{fluct} igl[Im[V] igr] + S_{diss} igl[Im[V] igr] + S_{LB}$$

In QM language corresponds to Markovian evolution by Lindblad equation

$$\frac{d}{dt}\rho_{Q\bar{Q}}(t) = -i\left[H_{Q\bar{Q}},\rho_{Q\bar{Q}}\right] + \sum_{i=1}^{N_{LB}} \gamma_i \left(\hat{L}_i \rho_{Q\bar{Q}} \hat{L}_i^{\dagger} - \frac{1}{2} \hat{L}_i \hat{L}_i^{\dagger} \rho_{Q\bar{Q}} - \frac{1}{2} \rho_{Q\bar{Q}} \hat{L}_i \hat{L}_i^{\dagger}\right)$$

Actually: unravel into wavefunction stochastic dynamics: Quantum State Diffusion T. Miura, Y.Akamatsu, M. Asakawa, S. Kajimoto, A.R., in preparation

$$|d\psi
angle = |\psi(t+dt)
angle - |\psi(t)
angle \ = -iH|\psi(t)
angle dt + \sum_{n} egin{pmatrix} 2\langle L_{n}^{\dagger}
angle_{\psi}L_{n} - L_{n}^{\dagger}L_{n} \ -\langle L_{n}^{\dagger}
angle_{\psi}\langle L_{n}
angle_{\psi} \end{pmatrix} |\psi(t)
angle dt \ + \sum_{n} \left(L_{n} - \langle L_{n}
angle_{\psi}
ight) |\psi(t)
angle d\xi_{n}, \ ext{bigh} : \ high : \$$

$$L_{\vec{k},a} = \sqrt{\frac{D(\vec{k})}{2}} \left[1 - \frac{\vec{k}}{4MT} \cdot \left(\frac{1}{2} \vec{P}_{\text{CM}} + \hat{\vec{p}} \right) \right] e^{i\vec{k} \cdot \hat{\vec{r}}/2} (t^a \otimes 1)$$
$$- \sqrt{\frac{D(\vec{k})}{2}} \left[1 - \frac{\vec{k}}{4MT} \cdot \left(\frac{1}{2} \vec{P}_{\text{CM}} - \hat{\vec{p}} \right) \right] e^{-i\vec{k} \cdot \hat{\vec{r}}/2} (1 \otimes t^{a*})$$
$$\tilde{D}(k) = g^2 T \frac{\pi m_D^2}{k(k^2 + m_Z^2)^2}, \quad m_D = gT \sqrt{\frac{N_c}{3} + \frac{N_f}{6}}$$

high temperature weak coupling parameters

Use scale separation: m_o > T heavy mass & weak coupling approximation

$$S_{FV} pprox S_{pot} ig[Re[V] ig] + S_{fluct} ig[Im[V] ig] + S_{diss} ig[Im[V] ig] + S_{LB}$$

In QM language corresponds to Markovian evolution by Lindblad equation

$$\frac{d}{dt}\rho_{Q\bar{Q}}(t) = -i\left[H_{Q\bar{Q}},\rho_{Q\bar{Q}}\right] + \sum_{i=1}^{N_{LB}} \gamma_i \left(\hat{L}_i \rho_{Q\bar{Q}} \hat{L}_i^{\dagger} - \frac{1}{2} \hat{L}_i \hat{L}_i^{\dagger} \rho_{Q\bar{Q}} - \frac{1}{2} \rho_{Q\bar{Q}} \hat{L}_i \hat{L}_i^{\dagger}\right)$$

Actually: unravel into wavefunction stochastic dynamics: Quantum State Diffusion T. Miura, Y. Akamatsu, M. Asakawa, S. Kajimoto, A.R., in preparation

 $|d\psi
angle = |\psi(t+dt)
angle - |\psi(t)
angle \ = -iH|\psi(t)
angle dt + \sum_{n} egin{pmatrix} 2\langle L_{n}^{\dagger}
angle_{\psi}L_{n} - L_{n}^{\dagger}L_{n} \ -\langle L_{n}^{\dagger}
angle_{\psi}\langle L_{n}
angle_{\psi} \end{pmatrix} |\psi(t)
angle dt \ + \sum_{n} \left(L_{n} - \langle L_{n}
angle_{\psi}
ight) |\psi(t)
angle d\xi_{n},$

$$L_{\vec{k},a} = \sqrt{\frac{D(\vec{k})}{2}} \left[1 - \frac{\vec{k}}{4MT} \cdot \left(\frac{1}{2} \vec{P}_{\text{CM}} + \hat{\vec{p}} \right) \right] e^{i\vec{k} \cdot \hat{\vec{r}}/2} (t^a \otimes 1)$$
$$- \sqrt{\frac{D(\vec{k})}{2}} \left[1 - \frac{\vec{k}}{4MT} \cdot \left(\frac{1}{2} \vec{P}_{\text{CM}} - \hat{\vec{p}} \right) \right] e^{-i\vec{k} \cdot \hat{\vec{r}}/2} (1 \otimes t^{a*})$$
$$\tilde{D}(k) = g^2 T \frac{\pi m_D^2}{k(k^2 + m_D^2)^2}, \quad m_D = g T \sqrt{\frac{N_c}{3} + \frac{N_f}{6}}$$

high temperature weak coupling parameters

I First "derivation" of phenomenological models based on nonlinear Schrödinger equation

c.f. e.g. R. Katz, P. Gossiaux Annals Phys. 368 (2016) 267

Use scale separation: m_o > T heavy mass & weak coupling approximation

$$S_{FV} pprox S_{pot} ig[Re[V] ig] + S_{fluct} ig[Im[V] ig] + S_{diss} ig[Im[V] ig] + S_{LB}$$

In QM language corresponds to Markovian evolution by Lindblad equation

$$\frac{d}{dt}\rho_{Q\bar{Q}}(t) = -i\left[H_{Q\bar{Q}},\rho_{Q\bar{Q}}\right] + \sum_{i=1}^{N_{LB}} \gamma_i \left(\hat{L}_i \rho_{Q\bar{Q}} \hat{L}_i^{\dagger} - \frac{1}{2} \hat{L}_i \hat{L}_i^{\dagger} \rho_{Q\bar{Q}} - \frac{1}{2} \rho_{Q\bar{Q}} \hat{L}_i \hat{L}_i^{\dagger}\right)$$

Actually: unravel into wavefunction stochastic dynamics: Quantum State Diffusion
T. Miura, Y. Akamatsu, M. Asakawa, S. Kajimoto, A.R., in preparation

$$|d\psi
angle = |\psi(t+dt)
angle - |\psi(t)
angle \ = -iH|\psi(t)
angle dt + \sum_{n} igg(rac{2\langle L_{n}^{\dagger}
angle_{\psi}L_{n} - L_{n}^{\dagger}L_{n}}{-\langle L_{n}^{\dagger}
angle_{\psi}\langle L_{n}
angle_{\psi}}igg) |\psi(t)
angle dt \ + \sum_{n} ig(L_{n} - \langle L_{n}
angle_{\psi}ig) |\psi(t)
angle d\xi_{n},$$

$$L_{\vec{k},a} = \sqrt{\frac{D(\vec{k})}{2}} \left[1 - \frac{\vec{k}}{4MT} \cdot \left(\frac{1}{2} \vec{P}_{\text{CM}} + \hat{\vec{p}} \right) \right] e^{i\vec{k}\cdot\hat{\vec{r}}/2} (t^a \otimes 1)$$
$$- \sqrt{\frac{D(\vec{k})}{2}} \left[1 - \frac{\vec{k}}{4MT} \cdot \left(\frac{1}{2} \vec{P}_{\text{CM}} - \hat{\vec{p}} \right) \right] e^{-i\vec{k}\cdot\hat{\vec{r}}/2} (1 \otimes t^{a*})$$

 $\tilde{D}(k) = g^2 T \frac{\pi m_D^2}{k(k^2 + m_D^2)^2}, \quad m_D = g T \sqrt{\frac{N_c}{3} + \frac{N_f}{6}}$

high temperature weak coupling parameters

- First "derivation" of phenomenological models based on nonlinear Schrödinger equation c.f. e.g. R. Katz, P. Gossiaux Annals Phys. 368 (2016) 267
- First genuine Lindblad implementation: previous works could not maintain positivity of p

Use scale separation: m_O > T heavy mass & weak coupling approximation

$$S_{FV} pprox S_{pot}ig[Re[V]ig] + S_{fluct}ig[Im[V]ig] + S_{diss}ig[Im[V]ig] + S_{LB}$$

In QM language corresponds to Markovian evolution by Lindblad equation

$$\frac{d}{dt}\rho_{Q\bar{Q}}(t) = -i\left[H_{Q\bar{Q}},\rho_{Q\bar{Q}}\right] + \sum_{i=1}^{N_{LB}} \gamma_i \left(\hat{L}_i \rho_{Q\bar{Q}} \hat{L}_i^{\dagger} - \frac{1}{2}\hat{L}_i \hat{L}_i^{\dagger} \rho_{Q\bar{Q}} - \frac{1}{2}\rho_{Q\bar{Q}} \hat{L}_i \hat{L}_i^{\dagger}\right)$$

Actually: unravel into wavefunction stochastic dynamics: Quantum State Diffusion T. Miura, Y. Akamatsu, M. Asakawa, S. Kajimoto, A.R., in preparation

- Encouraging preliminary results: admixtures become independent of initial conditions
- Distribution of states at late times agrees well with Boltzmann and yields consistent T

Conclusion

- Conceptual and technical progress in in-medium quarkonium theory
- Recent and ongoing studies on quarkonium dynamical properties
 - Control over systematics in direct spectral reconstructions in lattice NRQCD S.Kim, P. Petreczky, A.R., JHEP 1811 (2018) 088
 - Pade based extraction of the in-medium heavy quark potential possible P. Petreczky, A.R., J. Weber, NPA982 (2019) 735
 - Improved analytic parametrization of V(R) using the generalized Gauss law D. Lafferty, A.R., arXiv:1906.00035
 - First consistent Lindblad equation for in-medium heavy quarkonium with T. Miura, Y. Akamatsu, M. Asakawa (in progress)
- A lot of work remains to be done:
 - Explore the initial stages of a HIC: formation dynamics of quarkonium with A. Lehmann (in preparation)
 - Improve reconstruction of spectral functions: excited states physics

Conclusion

- Conceptual and technical progress in in-medium quarkonium theory
- Recent and ongoing studies on quarkonium dynamical properties
 - Control over systematics in direct spectral reconstructions in lattice NRQCD S.Kim, P. Petreczky, A.R., JHEP 1811 (2018) 088
 - Pade based extraction of the in-medium heavy quark potential possible P. Petreczky, A.R., J. Weber, NPA982 (2019) 735
 - Improved analytic parametrization of V(R) using the generalized Gauss law D. Lafferty, A.R., arXiv:1906.00035
 - First consistent Lindblad equation for in-medium heavy quarkonium with T. Miura, Y. Akamatsu, M. Asakawa (in progress)
- A lot of work remains to be done:
 - Explore the initial stages of a HIC: **formation dynamics** of quarkonium
 - Improve reconstruction of spectral functions: excited states physics

Thank you for your attention

- Always find well defined lowest peak: potential picture appears viable
- Beware of Pade artifacts besides peak: e.g. positivity violation, spikes

Use scale separation: m_Q > T heavy mass & weak coupling approximation

$$S_{FV} pprox S_{pot} igl[Re[V] igr] + S_{fluct} igl[Im[V] igr] + S_{diss} igl[Im[V] igr] + S_{LB}$$

Use scale separation: m_o > T heavy mass & weak coupling approximation

$$S_{FV} pprox S_{pot} [Re[V]] + S_{fluct} [Im[V]] + S_{diss} [Im[V]] + S_{LB}$$

In QM language corresponds to Markovian evolution by Lindblad equation

$$\frac{d}{dt}\rho_{Q\bar{Q}}(t) = -i\left[H_{Q\bar{Q}},\rho_{Q\bar{Q}}\right] + \sum_{i=1}^{N_{LB}} \gamma_i \left(\hat{L}_i \rho_{Q\bar{Q}} \hat{L}_i^{\dagger} - \frac{1}{2}\hat{L}_i \hat{L}_i^{\dagger} \rho_{Q\bar{Q}} - \frac{1}{2}\rho_{Q\bar{Q}} \hat{L}_i \hat{L}_i^{\dagger}\right)$$

Use scale separation: m_o > T heavy mass & weak coupling approximation

$$S_{FV} pprox S_{pot} ig[Re[V] ig] + S_{fluct} ig[Im[V] ig] + S_{diss} ig[Im[V] ig] + S_{LB}$$

In QM language corresponds to Markovian evolution by Lindblad equation

$$\frac{d}{dt}\rho_{Q\bar{Q}}(t) = -i\left[H_{Q\bar{Q}},\rho_{Q\bar{Q}}\right] + \sum_{i=1}^{N_{LB}} \gamma_i \left(\hat{L}_i \rho_{Q\bar{Q}} \hat{L}_i^{\dagger} - \frac{1}{2} \hat{L}_i \hat{L}_i^{\dagger} \rho_{Q\bar{Q}} - \frac{1}{2} \rho_{Q\bar{Q}} \hat{L}_i \hat{L}_i^{\dagger}\right)$$

L, L[†] can be expressed in terms of Re[V] and Im[V] but e.o.m cannot be unravelled into a simple deterministic Schrödinger equation for ψ_{QQ}

Use scale separation: m_Q > T heavy mass & weak coupling approximation

$$S_{FV} pprox rac{S_{pot}ig[Re[V]ig] + S_{fluct}ig[Im[V]ig]}{+ S_{diss}ig[Im[V]ig] + S_{LB}}$$

In QM language corresponds to Markovian evolution by Lindblad equation

$$\frac{d}{dt}\rho_{Q\bar{Q}}(t) = -i\left[H_{Q\bar{Q}},\rho_{Q\bar{Q}}\right] + \sum_{i=1}^{N_{LB}} \gamma_i \left(\hat{L}_i \rho_{Q\bar{Q}} \hat{L}_i^{\dagger} - \frac{1}{2} \hat{L}_i \hat{L}_i^{\dagger} \rho_{Q\bar{Q}} - \frac{1}{2} \rho_{Q\bar{Q}} \hat{L}_i \hat{L}_i^{\dagger}\right)$$

- L, L[†] can be expressed in terms of Re[V] and Im[V] but e.o.m cannot be unravelled into a simple deterministic Schrödinger equation for ψ_{QQ}
- Naïve Schroedinger vs. 1st order gradient exp.

$$\psi_{Qar{Q}}(t) = exp\Big[-rac{
abla^2}{M} + Re[V] + rac{\eta(t)}{S_{fluct}}\Big]\psi_{Qar{Q}}(0)$$

Use scale separation: m_O > T heavy mass & weak coupling approximation

$$S_{FV} pprox rac{S_{pot}ig[Re[V]ig] + S_{fluct}ig[Im[V]ig]}{+ S_{diss}ig[Im[V]ig] + S_{LB}}$$

In QM language corresponds to Markovian evolution by Lindblad equation

$$\frac{d}{dt}\rho_{Q\bar{Q}}(t) = -i\left[H_{Q\bar{Q}},\rho_{Q\bar{Q}}\right] + \sum_{i=1}^{N_{LB}} \gamma_i \left(\hat{L}_i \rho_{Q\bar{Q}} \hat{L}_i^{\dagger} - \frac{1}{2}\hat{L}_i \hat{L}_i^{\dagger} \rho_{Q\bar{Q}} - \frac{1}{2}\rho_{Q\bar{Q}} \hat{L}_i \hat{L}_i^{\dagger}\right)$$

- L, L[†] can be expressed in terms of Re[V] and Im[V] but e.o.m cannot be unravelled into a simple deterministic Schrödinger equation for ψ_{QQ}
- Naïve Schroedinger vs. 1st order gradient exp.

$$\psi_{Qar{Q}}(t) = exp\Big[-rac{
abla^2}{M} + Re[V] + rac{\eta(t)}{S_{fluct}}\Big]\psi_{Qar{Q}}(0)$$
 $i\partial_t \langle \psi_{Qar{Q}}(t)
angle = \Big(-rac{
abla^2}{M} + Re[V] - i|Im[V]|\Big)\langle \psi_{Qar{Q}}(t)
angle$

$$i\partial_t \langle \psi_{Qar{Q}}(t)
angle = \Big(-rac{
abla^2}{M} + Re[V] - i|Im[V]| \Big) \langle \psi_{Qar{Q}}(t)
angle .$$

Use scale separation: m_O > T heavy mass & weak coupling approximation

$$S_{FV} pprox rac{S_{pot}ig[Re[V]ig] + S_{fluct}ig[Im[V]ig]}{+ S_{diss}ig[Im[V]ig] + S_{LB}}$$

In QM language corresponds to Markovian evolution by Lindblad equation

$$\frac{d}{dt}\rho_{Q\bar{Q}}(t) = -i\left[H_{Q\bar{Q}},\rho_{Q\bar{Q}}\right] + \sum_{i=1}^{N_{LB}} \gamma_i \left(\hat{L}_i \rho_{Q\bar{Q}} \hat{L}_i^{\dagger} - \frac{1}{2} \hat{L}_i \hat{L}_i^{\dagger} \rho_{Q\bar{Q}} - \frac{1}{2} \rho_{Q\bar{Q}} \hat{L}_i \hat{L}_i^{\dagger}\right)$$

- L, L[†] can be expressed in terms of Re[V] and Im[V] but e.o.m cannot be unravelled into a simple deterministic Schrödinger equation for ψ_{QQ}
- Naïve Schroedinger vs. 1st order gradient exp.

$$\psi_{Qar{Q}}(t) = exp\Big[-rac{
abla^2}{M} + Re[V] + rac{\eta(t)}{S_{fluct}}\Big]\psi_{Qar{Q}}(0)$$
 $i\partial_t \langle \psi_{Qar{Q}}(t)
angle = \Big(-rac{
abla^2}{M} + Re[V] - i|Im[V]|\Big)\langle \psi_{Qar{Q}}(t)
angle$

$$i\partial_t \langle \psi_{Qar{Q}}(t)
angle = \Big(-rac{
abla^2}{M} + Re[V] - i|Im[V]| \Big) \langle \psi_{Qar{Q}}(t)
angle \, .$$

S.Kajimoto, Y.Akamatsu, M. Asakawa, A.R., PRD97 (2018) 014003

Use scale separation: m_o > T heavy mass & weak coupling approximation

$$S_{FV} pprox rac{S_{pot}ig[Re[V]ig] + S_{fluct}ig[Im[V]ig]}{+ S_{diss}ig[Im[V]ig] + S_{LB}}$$

In QM language corresponds to Markovian evolution by Lindblad equation

$$\frac{d}{dt}\rho_{Q\bar{Q}}(t) = -i\left[H_{Q\bar{Q}},\rho_{Q\bar{Q}}\right] + \sum_{i=1}^{N_{LB}} \gamma_i \left(\hat{L}_i \rho_{Q\bar{Q}} \hat{L}_i^{\dagger} - \frac{1}{2} \hat{L}_i \hat{L}_i^{\dagger} \rho_{Q\bar{Q}} - \frac{1}{2} \rho_{Q\bar{Q}} \hat{L}_i \hat{L}_i^{\dagger}\right)$$

- L, L[†] can be expressed in terms of Re[V] and Im[V] but e.o.m cannot be unravelled into a simple deterministic Schrödinger equation for ψ_{QQ}
- Naïve Schroedinger vs. 1st order gradient exp.

$$\psi_{Qar{Q}}(t) = exp\Big[-rac{
abla^2}{M} + Re[V] + rac{\eta(t)}{S_{fluct}}\Big]\psi_{Qar{Q}}(0)$$
 $i\partial_t \langle \psi_{Qar{Q}}(t)
angle = \Big(-rac{
abla^2}{M} + Re[V] - i|Im[V]|\Big)\langle \psi_{Qar{Q}}(t)
angle$

Applicable at early times but incapable of thermalizing the heavy quark pair. O.9

Naive Schrödinger

O.6

Lindblad

O.5

Stochastic potential, lcorr = 0.48 fm complex potential, lcorr = 0.16 fm comp

S.Kajimoto, Y.Akamatsu, M. Asakawa, A.R., PRD97 (2018) 014003